If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2=105
We move all terms to the left:
m^2-(105)=0
a = 1; b = 0; c = -105;
Δ = b2-4ac
Δ = 02-4·1·(-105)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{105}}{2*1}=\frac{0-2\sqrt{105}}{2} =-\frac{2\sqrt{105}}{2} =-\sqrt{105} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{105}}{2*1}=\frac{0+2\sqrt{105}}{2} =\frac{2\sqrt{105}}{2} =\sqrt{105} $
| 3a-93=2a-53 | | 9m-16✓m=0 | | 19.95+3.95•c=63.40 | | 6w-78=7w-93 | | x+53+87+51=180 | | 9m-16^m=0 | | 9x−5=9(x−5) | | 56-a=1 | | 4w-51=w | | 4.3=3.8q | | 28=29m=35+22m | | C=3c-46 | | 5x-10+70+60=180 | | 6z-62=3z-11 | | -9+2(3+g)=14(g=1) | | 3s-2=4s-9 | | 5y-96=y+8 | | 4(3y-5)-7y=-6 | | 5x^2-17x+3=-4x-55x2−17x+3=−4x−5 | | 19x-6=x | | 3x+17+4x+6+80=180 | | 5x2−17x+3=−4x−5 | | 155=5r | | -7(u+2)=3u-5+3(2u+3) | | -35x=-35x | | 17y−2y+4y+y=20 | | 3w=10w-35 | | 2t+20=t+21 | | 116+(x+28)+(20x-6)=180 | | 5p-28=9p-76 | | 9x-6=x-14 | | 20.4=3.4d |